Big Data: как применять и анализировать большие данные?
Big Data - это большие массивы информации, которые часто бывают неупорядоченными. Технологии работы с такими данными известны как Big Data технологии. Это направление в IT является одним из самых популярных в настоящее время. И это не удивительно. Приложение технологий Big Data открывает новые возможности для развития бизнеса, а также предоставляет клиентам персонифицированные продукты и сервисы.
В данной статье мы рассмотрим технологии анализа больших данных и объясним, как их использование может пригодиться в бизнесе.
Приблизительно с 2010 года стало понятно, что аналитика большого объема данных имеет очень широкое применение в разных отраслях. Развитие информационных технологий и вычислительных мощностей позволило обработку колоссальных объемов данных. Огромные массивы информации поступают из самых разных источников: социальные сети, интернет-магазины, форумы, мобильные устройства, измерительные приборы, метеостанции, аудио- и видеорегистраторы и другие. Эти данные растут экспоненциально, а традиционные методы и инструменты уже не могут справиться с их обработкой.
Понятие Big Data возникло в 2008 году, когда был выпущен специальный номер журнала Nature, посвященный влиянию огромных массивов информации в развитии науки. Для обработки всех этих данных нужны специальные алгоритмы и программные средства, также входящие в понятие Big Data.
Анализ методов хранения данных
Чтобы получить пользу от больших данных, их необходимо эффективно управлять, т.к. они могут накапливаться с масштабируемой скоростью. Big Data охватывает огромный, постоянно обновляемый массив разнородной информации, для работы с которым используется несколько этапов. Вначале производится сбор данных из различных источников информации, затем выполняются процедуры хранения, обработки и защиты их от потерь. Особенно актуальны в этом контексте облачные решения, которые обладают несомненными преимуществами по сравнению с объемной локальной IT-инфраструктурой.
При работе с большими объемами информации, созданными различными источниками, в собственной IT-инфраструктуре может возникнуть ряд проблем, которые затруднят ее масштабирование. Нагрузки на физический сервер в пиковые моменты могут быть не предсказуемы, что может привести к выходу из строя сервера. Кроме того, нарастание собственной IT-инфраструктуры может повлечь за собой очень серьезные расходы на ее создание, поддержку и защиту. Облачные технологии позволяют отказаться от закупки дорогостоящего оборудования и вместе с тем обеспечить быстрое масштабирование вычислительных ресурсов, что способствует надежности, отказоустойчивости и гибкой настройке облачной хранящейся информации. Многие компании сегодня переносят инфраструктуру в облако, чтобы нести меньшие финансовые и физические риски при работе с большими объемами данных.
Перед нами завершающий и наиболее значимый этап работы с большими данными — их анализ. Он играет ключевую роль в использовании потенциала Big Data в бизнесе. Именно анализ помогает избавиться от ненужного и выделить наиболее ценную информацию для компании.
Существует множество методов анализа больших данных. Охватить все из них в рамках данной статьи невозможно, поэтому мы расскажем о наиболее важных.
Переработка информации перед анализом
Процесс приведения неоднородных данных к унифицированному виду, заполнения пропущенных значений и удаления избыточной информации. Этап переработки информации перед анализом Big Data, который необходим для правильной подготовки данных к дальнейшему исследованию.
Data Mining: извлечение полезной информации из разнородного массива
Data Mining - это метод, который позволяет извлекать полезные закономерности из различных источников информации. Суть метода заключается в том, что он позволяет выявить связи и зависимости, которые не видны на первый взгляд.
В рамках этого метода решаются задачи по классификации, кластеризации и анализу отклонений. Классификация позволяет определить принадлежность объекта к определенному классу, кластеризация - объединение объектов в группы в зависимости от степени их сходства, а анализ отклонений помогает выявлять аномалии и выбросы.
Таким образом, Data Mining является эффективным методом для извлечения полезной информации из различных источников и может применяться в различных областях, где необходимо обрабатывать большие объёмы данных.
Нейронные сети
Алгоритмы машинного обучения во многом похожи на работу человеческого мозга. Они осуществляют анализ входных данных и выдают результат в соответствии с определенным алгоритмом. Нейросети, используемые в машинном обучении, могут быть очень умными. Например, они могут распознавать лица на фотографиях или определять недобросовестные транзакции по заданным признакам.
Анализ прогнозов
Прогнозирование различных событий может быть выполнено путём применения данного метода. Этот метод широко используется для предсказания поведения клиентов, возрастающего объёма продаж, финансовой стабильности компаний, изменений курса валют, определения сроков доставки товаров, а также для выявления неисправностей в работе оборудования. Обычно метод основан на изучении прошлых данных и определении параметров, которые могут повлиять на будущее.
Статья о статистическом анализе
Современные технологии Big Data не только позволяют обрабатывать большие объемы данных, но и существенно улучшают точность статистических данных. Это объясняется тем, что более обширная выборка обеспечивает более точный и корректный анализ результатов.
Визуализация является ключевым этапом в анализе данных, так как она позволяет представить информацию в удобном и понятном формате для пользователя. Этот процесс может включать в себя создание графиков, карт, схем, диаграмм и гистограмм.
Для достижения успешного результата визуализации используются специальные инструменты Big Data, которые позволяют обрабатывать и анализировать большие объемы данных.
Количество информации, сгенерированной пользователями, увеличивается с каждым годом. Примерно за 2020 год они сгенерировали почти 60 зеттабайт (около 60 × 10 21 байт) данных, а к 2025 году прогнозируется утроение этих цифр. Поэтому анализ Big Data является перспективным технологическим направлением, на которое вкладываются большие деньги крупных компаний. Большие данные актуальны и для бизнеса, и для науки, и для сферы государственного управления.
Какими характеристиками обладает Big Data?
Данные называются большими, если они отвечают трем основным характеристикам, которые обозначены «трем V»:
1. Объем (Volume). Эта характеристика связана с масштабом. Данные должны представлять собой огромные потоки информации, которые измеряются даже не в терабайтах, а в петабайтах и эксабайтах.
2. Скорость (Velocity). Это означает, что данные приходят из разных источников непрерывно и очень быстро.
3. Разнообразие (Variety). Big Data - это информация разных типов: текстовые и графические документы, аудио- и видеофайлы, логи. Она может быть совсем не упорядоченной или упорядоченной частично.
С ростом популярности Big Data в последние годы к «трем V» добавились еще две характеристики - достоверность (Veracity) и ценность (Value). Это значит, что данные должны быть точными и приносить пользу бизнесу. Иногда также выделяют еще одну характеристику - жизнеспособность (Viability).
Одним из главных вопросов, который возникает при работе с большими данными, является то, какие преимущества они могут принести бизнесу. Анализ больших объемов информации может ускорять и улучшать различные процессы, а также помогать предсказывать тенденции рынка и поведение клиентов.
Одной из первых сфер, которые оценили все преимущества использования больших данных, стали телекоммуникационные компании, представители банковской отрасли и ретейла. Сегодня, однако, технологии компаний по работе с большими данными становятся все более востребованными во многих отраслях, включая безопасность, медицину, сельское хозяйство, промышленность энергетику, науку и государственное управление.
Конкретные примеры практического применения больших данных в разных областях также весьма показательны. В торговле, рекламе и индустрии развлечений большие данные используются, например, для минимизации рисков и улучшения качества товаров и услуг. В промышленности же данные помогают повышать экологическую и энергоэффективность.
Отрасль безопасности также не остается в стороне. Большие данные используются для анализа информации и поиска угроз в различных сферах, например, в банковской системе. Наука и медицина тоже вовлечены в работу с большими данными - они помогают специалистам лучше понимать клинические данные и улучшать научные исследования. В сельском хозяйстве данные используются для оптимизации урожаев и увеличения продуктивности, а в государственном управлении - для улучшения процессов принятия решений и работы органов власти.
Таким образом, использование больших данных может оказать значительное влияние на различные аспекты бизнеса и общественной жизни. Области применения их анализа все время расширяются, открывая новые возможности для увеличения прибыли и повышения удобства для покупателей и пользователей.
Внедрение новых технологий
Технологические компании используют возможности анализа Big Data для создания интеллектуальных продуктов и сервисов, которые способны решать принципиально новые задачи. Одним из примеров таких продуктов является платформа «вычислительной биологии», разработанная в США. Эта платформа предлагает возможность видеть взаимодействие химических веществ с сигнальными рецепторами клеток организма. Благодаря инструментам Big Data, настоящая революция в фармакологии уже не за горами: платформа позволит находить и создавать лекарственные препараты, которые точно попадают в цель.
Анализ больших данных уже используется в медицинских исследованиях для ускорения и повышения точности результатов. На конференции DUMP, которая проходила в Уральском регионе, были представлены данные об использовании Big Data в медицинских исследованиях. Использование новой технологии в ходе цикличного медицинского тестирования выявило погрешность в 20% по сравнению с неавтоматизированными измерениями.
В Европе использование анализа больших данных в медицине более распространено. Исследования в этой области показали, что некоторые генетические факторы могут быть связаны с заболеваемостью раком. Была проанализирована информация на 150 000 пациентов, и выявлены факторы риска возникновения заболевания.
Внедрение новых технологий в медицину позволяет значительно повысить эффективность медицинских исследований и медицинской практики в целом.
Изучение поведения клиентов
В настоящее время маркетологи активно используют большие данные для оптимизации эффективности рекламной кампании. Данные анализируются из истории покупок, поиска, посещений и лайков в социальных сетях для определения предпочтений пользователей. Это позволяет предлагать клиентам только самые подходящие предложения, сделав рекламу более адресной и эффективной, благодаря Big Data.
Одним из первооткрывателей в этой области стал известный маркетплейс Amazon. В системе рекомендаций учитывались не только история покупок и анализ поведения клиентов, но и внешние факторы, такие как сезон и предстоящие праздники. В результате система рекомендаций Amazon стала ответственной за более чем треть всех продаж.
Обеспечение безопасности транзакций является одним из важнейших приоритетов для банков. Сегодня они используют большие данные, чтобы улучшить методы выявления мошеннических операций и предотвратить кражу персональных данных клиентов.
Одним из инструментов, используемых банками, является анализ Big Data и машинное обучение для создания моделей поведения честных пользователей. Любое отклонение от этого поведения сигнализирует службе безопасности о возможной угрозе.
"Сбербанк" был одним из первых банков, который начал использовать подобную систему еще в 2014 году. Они внедрили систему сравнения фотографий клиентов, полученных с помощью веб-камеры, с изображениями из базы данных. Благодаря этой системе была достигнута большая точность идентификации клиентов, а количество случаев мошенничества снизилось в десять раз.
Улучшение производственных процессов с использованием Big Data
Сегодняшние производственные процессы все больше и больше опираются на сбор и анализ больших данных. Одна из главных задач таких систем - предотвращение простоев и уменьшение времени, затрачиваемого на производство. Для этого интеллектуальные системы отслеживают состояние оборудования и производят анализ данных, полученных от приборов мониторинга, средств измерения и логических контроллеров. Такой подход позволяет предотвратить поломки, выявить и исключить из производственного процесса неэффективные операции, а также снизить расходы на материалы и потребление энергии. Об этом сообщает сайт Controleng.ru.
Одним из примеров успешной реализации проектов в области сбора и анализа больших данных стало внедрение интеллектуальной платформы в аэропорту «Пулково» в 2020 году. Эта платформа управляет работой семидесяти служб компании и автоматизирует процессы, что делает управление аэропортом более прозрачным и эффективным. Оперативное получение полной информации по текущим процессам повышает качество работы предприятия. Внедрение интеллектуальной платформы также упрощает сотрудничество аэропорта с авиакомпаниями, помогает оптимизировать планирование ресурсов, в том числе техническое обслуживание и ремонт терминалов. Согласно прогнозам экспертов, изменения приведут к улучшению технического состояния оборудования на 10% и повышению скорости обращения запасов, а уровень сервиса по поставкам увеличится на 20%. Сайт АНО «Радиочастотный спектр» сообщает об этом.
Прогнозирование на основе больших данных
При использовании больших данных возможно строить прогнозные модели, выявлять закономерности и предугадывать поведение людей и процессов в будущем. Примером могут служить прогнозы спроса на товары и услуги, успешность рекламных кампаний и эффективность взаимодействия с клиентами. Также прогнозные модели могут применяться в различных отраслях, включая образование для предположений о будущей успеваемости учащихся и эффективности программ.
Прогнозная аналитика на основе больших данных широко используется в авиации. Компания Airbus, например, планирует минимизировать количество случаев, когда самолет не выполняет полет из-за выявленной неисправности, благодаря предиктивному обслуживанию к 2025 году. Компания Lufthansa Technik уже внедряет платформу, которая предсказывает сроки замены деталей самолета.
Немного статистики
Исследование, проведенное консалтинговой компанией Accenture в 2014 году, включало опрос руководителей тысячи компаний из различных стран мира. По результатам исследования 60% опрошенных компаний успешно внедрили системы анализа больших данных и были довольны их результатами. Создание новых продуктов и услуг, увеличение количества способов получения дохода, улучшение клиентского опыта и повышение лояльности клиентов были названы участниками опроса основными преимуществами технологии Big Data.
Фото: freepik.com