Южноуральские учёные «впрягают» искусственный интеллект для решения математических задач

Если речь идёт о конечном числе каких-то объектов, отчего бы не перебрать их с помощью компьютера.

Источник фото: Фото редакции

Если речь идёт о конечном числе каких-то объектов, отчего бы не перебрать их с помощью компьютера. Другое дело, что перебор помогает отсеять «трудные» случаи, накопить базу примеров – то есть необходимый опыт, и уже тогда переходить к окончательному доказательству. Сегодня компьютерные технологии проникают в математику значительно глубже. Повседневностью – практически во всех областях деятельности человека – становятся нейросети. Искусственный интеллект сочиняет рекламные тексты, составляет образцы судебных исков – почему бы не привлечь его и к математическим доказательствам?

Профессор ЮУрГУ Леонид Соколинский опубликовал серию статей о том, как искусственный интеллект мог бы помочь в решении задач линейного программирования. «Линейное программирование» – термин, возникший едва ли не до появления компьютеров. На самом деле это задача поиска минимумов и максимумов функции внутри выпуклого многогранника. В реальной жизни это математическое явление имеет множество личин: например, транспортная задача – о том, как оптимально доставить продукцию со складов к торговым точкам, задача об оптимизации состава лекарств и многие другие ситуации, когда требуется оптимальное распределение ресурсов.

Решение этой задачи прославило двоих русских математиков (из СССР и США), получивших за свои открытия Нобелевскую премию, правда не по математике, а по экономике – Василия Леонтьева и Леонида Канторовича. Сегодня задачу линейного программирования может решить любой студент-младшекурсник. Но только если у неё два измерения. А вот когда измерений становится много – придётся «поскрипеть мозгами» и суперкомпьютеру – сложность возрастает экспоненциально. Привлечение искусственного интеллекта позволяет существенно сократить время и ресурсы, быстрее находить оптимальное решение – и не в разы, не на порядки, а на классы вычислительной сложности.

Источник фото: Фото редакции

Старший научный сотрудник ЮУрГУ Нойагдам Самад привлекает искусственный интеллект для решения интегро-дифференциальных уравнений. Эти уравнения с «дробными производными» обобщают классические уравнения теплопроводности, колебания струны, могут быть полезными при изучении квантовых явлений.

Главный недостаток искусственного интеллекта в том, что он никогда не способен дать ответ со стопроцентной точностью. Говорят, что художники, особенно иллюстраторы фантастических романов, используют нейросети для «вдохновения»: генерируют изображение неведомого, а затем сами переосмысливают его и создают собственные произведения. Так и в математике. Искусственный интеллект служит верным помощником в доказательстве математических теорем, но лишь подводит к ответу. Завершающая точка в последней инстанции всё равно остаётся за человеком.

Автор
Олег Александров

Последние новости

К вершинам мастерства

Сменили классные кабинеты на сцену. В детской школе искусств № 1 состоялся традиционный конкурс для педагогов "К вершинам мастерства".

В магнитогорской библиотеке завивали мозги с помощью литературы

В Библиотеке мира (библиотеке-филиале № 2 «Объединения городских библиотек» г.

Важная работа

Об основных показателях состояния сферы субъектов малого и среднего предпринимательства за 2024 год сегодня на малом аппаратном совещании доложила начальник управления экономики и инвестиций Мария Матлюк.

Диалог с молодым поколением металлургов

Директор по персоналу Магнитогорского металлургического комбината Олег Парфилов встретился с представителями Союза молодых металлургов.

На этом сайте вы найдете актуальные вакансии в Пскове с предложениями работы от ведущих работодателей города

Комментарии (0)

Добавить комментарий

Ваш email не публикуется. Обязательные поля отмечены *